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ABSTRACT

The layers of the earth's crust act as a {ilter with
respect to seismic energy arriving at a given statlon.
Consequently the motion recorded at the earth's surface de-
pends not oniy on the frequency content of the exciting
seismic energy and on the response characteristics of the
recording instrument, but also on the elastic parameters
and thicknesses of the layers., This latter dependence 1is
the basis for a method of 1investigating the structure of
the crust.

In order to obtain information independent of the time
history and spatlal distribution of the source of energy
the spectrum of the vertical component of motion is divided
by the spectrum of the horizontal component, This ratio
represents the tangent of the apparent angle of emergence
as a function of frequency. It depends only on the angle
of incidence of the ray and the system of layers below the
recording station. The parameters of the crust may be de-
fermined by comparison of theoretical and observed spectra
of this ratio.

To facilitate this comparison a set of master curves
was calculated using the matrix development of Haskell,
Calculations of these curves are in terms of a dimension-~
less frequency. This presentation allows the grouping of
the curves corresponding to different crustal mcdels into
families of curves, A set of master curves of the appar-~
ent angle of emergence for one-layer models and for d4if-
ferent angles of 1incldence and contrasts of velocities be-
tween the crust and the mantle 1s presented. This set is
complete in the sense that any one-layer model may be
interpolated., A second set for some combinations of two-
layer mcdels 1s also presented.

The characteristics of these curves are discussed from
the point of view of their '"periodicity" in the frequency
domain and of their amplitude in order to investigate the
influence of the layer parameters. Considerations either
of constructive interference or of Fourler analysis of a
pulse multiply reflected within the crust reveal that the
amplitude of peaks and troughs in the spectrum depends on
the velocity contrast at the interfaces of the system, The
"periodicity" or spacing of peaks and troughs depends on
the time lags between the first arrival of the direct P
wave and the secondary arrivals of the converted waves or
of multiply reflected and refracted wavea, Closely spaced
fluctuaticns correspond to large time lags, and widely




spaced {luctuations to short time lags.

QObservations of the spectrum of the apparent angle of
emergence were obtained by dividing the smoothed spectra
of the vertical and horizontal component selsmograms. In
order to avold the 1Influence of reflections at the crust
near the source or of reilections from the core of the
earth, the earthquakes selected were of intermediat- and
large focal depth and were restricted to epicentral dis-
tances less than 55°,

Application of the method to the long-period seismo-
grams of the Saint Louls University Network of stations
gives an average P velocity in the crust of 6.6 km/sec
and a total thickness of the crust of 42 km for the cen-
tral part of the United States under these stations,
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LIST OF SYMBOLS

Apparent surfacc veloclity

Angle of emergence of the P wave in the ith layer.
Angle of emergence of the S wave in the ith layer.
Frequency.

Folding frequency.

Thickness of the ith layer.

Angle of 1ncidence of the P wave in the 1ith layer.
Wave number,

Angle of incldence of the S wave in the 1ith layer.
Period.

Total time length of record digitized.

Transfer function of a layer system for the
horizontal component of motion.

'Transfer function of a layer system for the

vertical component of motion.

Horizontal component of particle velocity at the
surface,

Vertical component of particle velocity at the
surface.

Compressional velocity in the 1th layer.
Shear velocity in the 1ith layer.
Time increment.

Phase angle correspoding to a wave traveling n
times as P in the ith layer.

Phase angle of the transfer functions.

Dimensionless parameter to evaluate transfer
functions.
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Lame's elastic parameter.
Wave length.

Lame's elastic parameter.
C2nsity in the 1ith layer.

Poissont's ratio,

Time lag of pulse b respect to first arrivel.
Angular frequency.
Rotatlional solution c¢f the wave equatlon,

Dilatatiocr4l solution of the wave equation.




THE DETERMINATION OF CRUSTAL THICKNESS FROM THE
SPECTRUM OF P WAVES

1. Introduction

For many purposes the crust of the Earth and the
upper mantle may be considered as a system ¢{ norizontal
layers., When this system 1s excited by selsmic energy its
frequency response to the forced vibration is a function
of the eiastic parameters and thicknesses of the layers,
As a result of this behavior the seismograms obtalned at
the surface contain detailed information pertaining to
the crust and upper mantle of the earth immedlately below
the point of observation, Modern advances in the .heory
of elastic waves transmitted by layered media and computing
facilitles by means of electronlic computers make it pos-
sible today to extract this information and to evaluate
to a greater or lesser degree the parameters of the crust
from the spectrum of longitudinal seismic waves,

The analysis of the body waves for tnis purpose 1s
more convenlently performed in the frequency domain. This
is the result of recent studies by Haskell (1953, 1962),
Phinney (1964), Hannon (1964b), Harkrider (1¢54) and Fuchs
(1965), who have investigated the theoretical calculation
of the frequency responce of layered systems to the energy

of body waves,




In the present investigation the effect of layered
media on infinite trains of sinusoidal longitudinal plane
waves incident oblique.y from below 1s studied, The re-
sponse of different stratified models 1is systematized in
2uch a way that families ot curves for different models are
obtained. By interpolation the response of intermediate
models is made possible. Since the apparent angle of emer-
gence of longitudinal waves 1s 1ndependent of the frequency
content of the source, the effect of the layered system on

this angle 1is taken as the basls of the analysis.

1.1 Observations of the effect of local geologlcal param-

eters on longitudinal seismic waves.

Instrumental observations of the effect of the crustal
layer on the periods and amplitudes of seismic body waves
were fifst reported by certain Japanese authors: Imamura
(1929), Ishimoto (1931a, 1931b, 1932, 1934), Nasu (1631),
Inouye (1934) and Takahasi and Hiramo (1941). These inves-
tigators reported differences in the selsmograms obtalned
for tﬁe same earthquake, at the same epicentral distance
and azimuth, and by similar instruments but lc¢cated on dif-
ferent geological sites, As a possible explanation of the
differe .ce the investigators suggested the reflecting char-
acter of the surface layers. At the same time Suzuki (1732)
observed changes in the apparent angle of emergence with
cnange in period of the waves, His explanation of the

pthenomenon was also in terms of the reflections and refrac-
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tions taking place within the layers of the crust,

Simiiar types of observations wvere made in Europe and
America. Gutenberg (1934) noticed the preference of cer-
tain stations to detect waves of a given period. The ampli-
tude of the vibrations was also connected with the geologil-
cal qualities of ihe site, Neumann (1954) noticed the
differert -e<vonse of the "granitic type of reock" and '"deep
sedimentary rock.”" (Greater amplitudes are always connected
with the second type of rock. The amplitud. of the selismic
waves 1n relation to the geology of the place where the
instruments were located was also studied by Gutenberg
(1857). He further noticed that the long-period waves are
not s¢ affected by geological variations as are short-period
waves, The efect o the ground on the amplitudes of body
waves 1s the mailn reason why Gutenberg and Richter {1956)
introduced the station correction factors when the magnitude
of the earthquakes was determined from the amplitude and
period of body waves,

The influence of the local near surface geology on the
amplitude of short period P waves was observed by Fernande:z
(1963) using the North American stations of tie Long Range
Seismic Measurements Program. Similar types of observi-
tions for long-period waves by Nuttli {1964) showed that the
long periods are not so sensitive to local characteristics
of the site. The apparent angle of Incidence and its changes

with frequency were the object of observations by Nuttli




and Whitmore (19061)and by Nuttli (1964a).

1.2 Theoretical studies of tne influence of a layered

medium on the spectrum of longitudinal waves.

The series of observations just mentioned were accom-
panied by theoretical developments of the subject,

The observations of Imamura in 1929 att.racted the
attention of several Japanese seismologists. The problem
or' the free vibratiosns of the layered crust, and especilally
of the top layer, was not purely academic. In a country
like Japan the influence of the ground on the amplitudes and
accelerations created by earthquakes was a matter of public
safety and of practical interest.

Under certain simplifying assumptions the theoretical
problem concerns the solution of the wave equation which
satisfies the boundary conditions of a system of horizontal
layers. The layers are excited by an incident longitudinal
wave which arrives at the base of the system at some angie
of incidence., The boundary conditions for the solutlon of
tne problem are the continulty of stress and displacement
at each intTernal interface and the vanishing of the stress
at the free surface. The numerical calculations required
were laborious and the authors simplifled the problem to the
simple cases of one or twc layers and normal angle of inci-
dence,

This 1is, for example, the approach of Sezawa (1930)who con-

siders a one-layer model over a half-space and a dilatationa.
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pulse propagated vertically. The same metrod 1s used by
Sezawa and Kanal in a series of studies (1932a, b, 1937}
including two-layer models, obliquely incident waves and
harmonically osclllating sources. The theoretical seismogram
is a function of the product of the frequency of the waves
and the thickness of the layers. The same authors, Sezawa
and Kanai, in another series of articles (1932c, 1934),
studied the results of reflections and refractions in a
stratified medium.

Kanéi, in a ccllection of papers (1952, 1953a, b), cal-
culates the resonance curve for the vertical and horizontal
components. His results, though limited and partial and ob-
tained by a laborious method, are exact and represent a
significant contribution to the transmission problem of
seismic waves in layered medla.

Finally, Kanai and Yoshizawa (1956) studied the same
cffect for three-layer models excited not only by infinite
trains of harmonic vibrations but also by finite trains of
only one or two, or at most a few complete cycles. Kanail,
Tanaka and Yoshizawa (1959) extended the number of models
and made similar calculations for the motion at the free
surface and at the interfaces,

In the meanwhile a new approach to the problem was de-
veloped by Thomson (1950), and by Haskell (1953). The meth-
od allows the calculation of the sclution to the wave equa-

tion for any number of layers 1in terms of a four by four
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matrix whose members are a function of the parameters of

each layer, the angle of 1incldeince and wave number of the
wave., The method 1s very convenient for digital computer
calculaticns. In his numerical calculations for a standard
crustal model of one-layer over a semi-infinite half-space
Haskell (1962) gives the ratio of the vertical and horizon-
tal components of ground motion to the components of incident
sinusoidal P-wave at the bottom of the layer, as a function
of frequency and angle of incidence.

The work of Haskell was extended to different layered
models by Hannon (1964a). The effects of the layers on the
vertical and on the horizorital compcnent are considered as
transfer functions and the influence of chang2s in the
thicknesses and velocities of the layers 1s carefully exam-
ined. Theoretical seismograms have been obtained by Hannon
(1964p) by a Fourier synthesis of the transfer functions
computed using the Haskell-Thomson matrices,

Similar calculations for different crustal models were
the basis for the crustal studies of Phinney (1964) who
compared theoretical curves for the ratio of the vertical
to the horizontal transfer functions with the ratio of the
spectra of vertical and horizontal seismograms. In this way
Phinney was able to evaluate the crustal structures at some
localities. Nuttll (1964a) used the transfer function to
correct the apparent angle of incidence obtained from couser-

vations. The transfer functions for the 5 wave: .aave also
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been used by Nuttli (1964b) to correct the angle of pclar-
ization of S waves. In the studies of focal mechanisms
from the spectrum of body waves Ben-Menahem, Smith and Teng
(1964) correct the spectra for the effects of the crust at
the station site using the transfer functions.

F =2ntly Phinney (1965), to facilitate the use of theo-
retical calculation, integrated numerically the solutions
for the response to a line source and a point source in
elastic medla., This method of integration gives a theoreti-
cal specﬁrum of the first seismic arrival, as viewed through
an exponentially decaying time window.

Russian seismologists have shown interest in the prac-
tical applications of the problem. There are several in-
stances in which they have used the influence of the sedimen-
tary layers on the body wave3s to calculate the structure of
a site for prospecting purposes. Savarensky (1952) studied
the changes of the angie of emergency with freguency.
Gamburtsev (1954) suggested the "seismic frequency sounding
method" to investigete cross sections of interest. This
method consists in t.e comparison of observed apparent an-
gles of incidence 2t different frequencles with theoretical
values calculated using layered models. Ivanova {1959,1960)
used the method in a very simple way, Observations are ob-
tained by tuning the seismometer at different frequencles
and observing the apparent angle of incidence of the cor-

responding waves., The waves 1n question are generated by
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explosions in deep wells, The results are compared witr
theoretical curves obtained using a method developed by
Malinovskaya (1959).

Halperin (1962) studied the changes of the angle of
incidence with frequency for a wave passing through a low
velocity layer. An interesting theoretical study of the
effects of thin layers on elastic waves 1is given by
Pod'Yapol'ski (1961) who solves the Zoeppritz equations
for complex. amplitudes and considers the effect on a sinus-
oidal waﬁe multiply reflected 1n a thin layer., The multiple
reflection introduces the frequency effect into his calcula-
tions.

At the present moment 1t can be said that our theoreti-
cal knowledge of the effect of a layered medium on longi-
tudinal waves 1s exact and complete. The Haskell method
offers a fast technique to calculate the effect of the lay-
ers on the vertical and horizontal component of ground mo-
tion, Nevertheless the theoretical calcylations can be sys-
tematized in a better way in order to group together into
famillies of curves models with identical or similar response.
For thls purpose use may be made of a dimenslonless parameter,
Such a presentation allows a better cupplication of the theory
to observations and ccnsequently a better determination of
crustal parameters, Finally, the theory should be applied
to more refined observations. This has been done in this
study using earthquakes of intermedliate and great focal

depth.
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2. Influence of the Layer Parameters on the

Transf{er HMunctions

The Thomson-Haskell matrix formulation of the boundary
problem of seismic waves transmitted in a layered medium
offers a rapid and exact calculation of the corresponding
transfer functions. Only for high frequencies, as indi-
cated by Dunkin (1965) is 1t possible that the method intro-
duces errors due to numerical calculations, These high
frequencies will not be considered here.

A detailed exposition of the method has been given by
Haskell (1962) and by several others following Haskell
(e.g., Hannon, 1904) and will not be repeated here,

In order to investigate crustal structures using the
data of crustal transfer functions determined from the ob-
servation of P waves at a given place, 1t would be desir-
able to develop an inversion program whereby from the ob-
served transfer functions one might determine a crustal
model which best fits, in a least squares sense, the obser-
vational data. To this end, and to study the feasibility
of such a program, it 1s necessary to understand the influ-
enc ~hat changes of the parameters of the layers may have
on the appearance of the transfer function curves., In order
to do this two tests have been applied. 1In the first a
crustal model was altered by a small fraction elther in the

crustal thickness or in the crustal velocity of P waves and
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the results compared with the original transfer function,
In the second test the first partial derivatives of the
transfer functions with respect to the thickness, the elas-

tic parameters and the density of the layers were calculated.

2.1 Results of small changes of the parameters,

The transfer functions for the vertical and horizontal
compenents TW, TU, and the ratio TW/TU are each a function
of several parameters here indicated with their respective
symbols and corresponding to the ith layer:

h1 = thickness of the layer
o/y = longitudinal P wave velocity
@4 = density

(} 4 = shear wave velocity

the angle of incidence of the plane

in
wave at the bese of the layered system.
= frequency of a simple harmonic com-
ponent of an incident wave,

Each combination of these parameters will give a dif-
ferent value of the transfer functions. For a given
crustal model and angle of incidence the values of the
transfer functions versus frequency define the transfer
function curves,

To study the influence of the changes o¢f the zbove-~
mentioned parameters some limitatlons which are imposed by

nature 1its21f may simplify the problem,

T U g Rty it A 4 <= = - — >
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A trirst limitation based on pnysical properties of the

rocks of the crust is the relationship observed between
longitudina® and shear waves. It is commonly accepted that
for this part of the earth the ratio <x1/131 is approximate-
1y constant and does not vary greatly from \f§; correspond-
ing to a value of 0.¢5 for the Poisson's ratio, |
Another useful reiationship based on observations ex-
ists between the P velocity of crustal layers and tho den-
sity. According to Birch (1964), for the rocks of the crust,
the density increases in almost a linear way with seismic
velocitles, This convenient relation will be used in our
calculations.
Transfer functions, calculated using the FORTRAN II
program listed in Appendix I, are presented in the graphs
of Flgures 1 and 2. In Figure 1 the curves indicated by
the asterisks, * , correspond to an angle of incidence at
the base of the crust of 35° and to a crustal model A given

by the parameters:

P
Thickness Velocity Velocit Density
h (Km) (Km/sec) (Km/secg (gr/cci
Crustal Layer 30 65.56 3.7872 2.64
Mantle ) 8.2 4,7344 3.33

The curves indicated by the triangles, A , correspond to

model B. This model has exactly the same parameters but

with the thickness of the crust increased by 20% to 36 Km,
Examination of these two sets of curves shows that the

second set 1s fore-shortened or "shrunk" in frcquency




ol

—_—

16

~anuapToUul o ayFue 1e gd¢d IO PUR  PUE ¥ grapow TEISNID fL/ML PUB [LLML SLOTIDUNE Ja 8UBEY AyY ) suuyd pue eNINPON b
(£d0) ACNENOREA (070 T.: ..w.u —
b, ) . ---tzt\..' o, o --- ..h§
wes .‘.- xl.....x.u.c...-h..h...-Mhbtl}h!t'&tv ---‘h.vl!‘n!tbrt -- F&\&fatfhhtt
. - . . '. a
. Iy . - Ty
. . . . - &
- & . .~.. ———
o1t ‘ gy ee—
e—
oLl /i
&
n a0 {5,

W H

4

PV
- -

PranstTone, T

RS L X T P
" L o

o




17

Coew ok y ; P v ¢ d . TOpO]
e o b % oo G & L BUOT3 £ J ke 3 et S
b
el BJd JO) pue pu ; . DP\
9 . € sTapow Tejar U3 a0 ] M1 pu® [ M oun, 1ajsuBry sy O esey puE @ 0

T'Q

.:-* vt

W ‘. [} 3
Ry s ..a.v‘f‘.)..s.?&-l?hp.
oo £

Fevanet _ k

=]

(5d0) AONANDTH _:.o

DT

1%

T -

bR

e,

g UV Sy
EEEE Rt e L LN P

_,w.o

LT

PR bW
“

LI

.
SO Y.

KAt




e —

18

dependence but 1s otherwise exactl:. the same in amplitude
and shape as the first. This is obvious not only for the
absolute values of the three transfer functions TW, TU, and
TW/TU, but also for the phase angle presented in the graph
at the right side of the figure. As the frequency increases
the separation of similar portlions o the curves becomes
greater, This indicatea that both models will show a sim-
ilzr spectrum of body waves at low frequencies but quite
different at higher frequencies. The shifting of the fea-
tures of the curve corresponding to the altered model rela-
tive to the original one is exactly 20% on the frequency
scale, If the plot were made on logarithmic paper this
effect wouid be shown by & displacement to the left of the
second curve; otherwise the appearance of hoth curves would
be exactly the same.

The properties of the matrices used to calculate the
tranafer functions already suggested this factor, as was
indicated by Haskell (1953). Similar affects are observed
when multilayered models are considered.

In a similar way the same model A was compared with
model C. This model is exactly as model A but the P veloc-
ity in the cruat was incremented by 20%, to 7.87 km/sec.
The results of this change are presented in Figure 2., The
shear velocity and the density are also changed according
to the relations previously indicated. Examination of the

results slows that in this case the change of velocities
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affects not only the frequencies but also the amplitudes of
the curves,

The effect on the frequencies 1s obvious, especially
in the phase angle curves. In this case the frequency
scale 1is exvanded by 20%.

The change of amplitude of the transfer function os-
cillations was expected, since the contrast of velocities
between mantle and crust 1s smallier: coi.sequently the re-
flection coefficients for the P and SV reflected within the
crust are‘smaller. The physical interpretation is that for
small contrast of velocities the greatest part of secondary
energy is transmitted back into the mantle,

This amplitude effect due to the change of velocities
influences not only the absolute values of the transfer
functions vut also the oscillations of the phase angle.

The same two tests were performed for the same models
for the angle of incidence of 10°, The results are similar
ana are presented in Figures 3 and 4.

These results are significant since *hey show that the
transfer functions have a special relationship to frequency
such that changes of the parameters displace the peaks and
troughs of the curves in the frequency domain. This behavior
of the transfer functions presents difficuities when an in-
version problem 1is attempted in terms of frequency.

2.2 First partial derivatives.

The use of surface wave data for the investigatiocn of

earth structure has been improved recently by the develop-
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ment of an inversion technique based on a least squares
curve fitting procedure whereby theoretical group and phase
velocity dispersion curves obtained from selected earth

cdels are adjusted so as to best fit observed dispersion
curves., Dorman and Ewing (1962) and Brune and Dorman (1963)
applied the least squarestechnique by the repeated calcula-
tion of partial derivatives of phase veloclity with respect
to each of the parameters of the layers. Thls 1s done for
each iteration of the calculations. Anderson (1564) showed
that for recasonable variations in the parametecis of the
layers, the partial derivatives of the phase velocity may
be considered constant. This property reduces the least
squares inversion technique calculations and has been used
with success, for example, by McEvilly (1964) to evaluate
the crust-upper mantle structure in the central region of
the United States.

In order to use the body wave spectra to evaluate the
structure below the point of observation the same technique
could be applied to obtain the best fit in the least squares
sense between observations and theoretical curves. As in-
dicated above, a necessary condltion to use the simplified
technique of Anderson 1s that the partial derivatives of
the transfer functions with respect to the parameters of
the layers remain constant for reasonable variations of the
parameters, This property was investlgated by the direct
calculation of the partial derivatives of the transfer func-

tions TW, TU and the ratio TW/TU.

T T T e . - -
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Using the notation and sign conventions of Haskell
(1953 and 1962) and Hannon (19bla), the transfer functions
for the horizontal and vertical components of ground mo-

tions at a given frequency W/ are:

TU(\U) - 2¢ (jg J.n)

) (2-1)
TW(w) = 2c (:uw "j;v)

o D

¥ > X
L“ d! 6- ec /

t

L4 6 e

.LE Ay, By €, /
/

hoi om, B, O
-

4

Figure 5. Crusté{/:;stem 0 n layers and direction
of seismic ray.

where ¢ 1s the apparent surface velocity,
D) = (I.‘ JL.)(I?.'J;Z) - (IL‘]‘u)(J-u-J;')

and the Jji are the elements of the matrix product obtained

in solving the boundary value problem of the layer system:

-1
J- = E“ &"'\ q-n--k....'a'i (2-2)




. ‘nce each element or sub-matrix a, of (2-2) depends

m

on the parameters of only one layer 1t 1s possible to fina

the first partial derivatives of J and D with respect to any

of the independent parameters 1in any layer m by finding the

partial derivatives of the element matrix a, and substituting

this value in the product J.

For example, the partial derivative of TU(w) with re-

spect to the thickness of the mth layer will be:

21U . 2e [p ATg=T) - TurTn) g2

oh. o QD o

and

(2-3)

(2-4)

In order to be able tc differentiate a; with respect to

the independent parameters of the layers, each element of

a_ should be expressed in terms of the density @., the thick-

H1d

ness h, and the elastic parameter A., . For the crust it

is assumed that the Lame constants have identical value,

that 1s A = A

Then, for example, the first element of ag is:

\

= 2
(am)u=—g—%§ teg [h\"~.(%:;\-i~4)}

/ ’ , V4
-\22‘_?-() ws RL,“_(Q-,C _1‘)J

> i i - =g ——— o .

-,
n)
\n

Mo g
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and its rirst partial derivative with respect to the thick-

ness of the mth layer is:

N

Dan)e . _2de g fencd 4V ThL (oo
L e...cu(—‘;;ﬁ ) = ”M(%Tid)_

) 2 ) (2-6)
2 "Ca..-) o uL\(@ <y 3
L f k(S ) im]Bb (& )

The same operation may be performed for the 16 elements of
the matrix and with respect to the independent parameters
L;’ }R(, G& 5 These calculations have been combined
in a FORTRAN II computer program listed in Appendix (II),
and the results of this program were plotted in Figures 6 to
8. The‘partial derivatives shown in these figures correspond
to the same crustal model A studied earlier in this chapter
by variation of the parameters,

In general the partial derivatives have large values
even for low frequencies, The values of the derivative
are greater for the ratio of the vertical and horizontal
components TW/TU, By studying the curves of the first partial
derivatives it may be noted that the maxima correspond to
the maxima of the corresponding transf'er functions., This
could be expected from the character of the sl..fting toward
higher or lower frequencies of the peaks of the transfer

functions, as noted above, when the rarameters of the layers
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are changed. This shifting will affect most notably the
peaks of the curves. Also, since the shift increases with
frequency, tne partial derivatives lincrease also with fre-
quency.

To study the effect of changes in the parameters in a
multilayered model the crustel model 1 of Hannon (1964a}
was selected. This model 1s similar to the crustal struc-

ture of the central United States and its parameters are:

P S
Layer .- Thickness Velo:lit Velocit Densitg
Number {km) (km/sec¥ (km/secg (gm/cm”)
1 1.0 4,40 2.50 2.70
2 16.0 6.20 3.50 2.00
3 18.0 6.40 3.70 2.90
Half-space 8.20 4,00 3.30

The modulus and the phase of the transfer function for the
vertical and horizontal component TW and TU and their ratio
TW/TU afe given in Figure 9. The corresponding first par-
tial derivatives with respect to the thickness, lLame's con-
stant and density of each of the layers are presented in
Figure 10 to 18.

.Theee calulations show that thin layers have smaller
values of the first partial 4derivative than do thick layers,
This 1is explained, again, by the shifting of the frequencies
since the shifting was proportional to the thickness of the
layer in relation to the total thickness of the system, 1In
the case of a thin layer this shifting is small and as such

the changes of the transfer functions will be small,
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The periodical character of the f{irst partial deriva-
tives may be explained by the same shifting of the f{requen-
cles. As the frequency increases the peaks are displaced
more and more tili one peak 1s displaced to the frequency
of the neighboring peak of the original curve, In this
event the first partial derivative 1s not so great. This
situation corresponds to the minima of the first partial
derivative curves.

Among the different parameters the changes 1n density
affect more the transfer functions. For the angzle of inci-
dence of 20° the vertical component transfer function is
more sensitive to changes of the parameters than the hori-
zontal component.

To test the stability of the first partial derivatives
when small changes of the parameters are introduced in the
parameters of the crust, model A and its partial derivatives
were compared with the first partial derivatives of model D,
This model D 1s the same as model A with the exception of
the thickness of the crust which was incremented by 10% to
33 lm,

The numerical results showed that the individual values
of the first partial derivatives for a given {requency were
quite different for both models. Consequently an inversion
process based on the assumption that the first partial
derivatives remain constant for reasonable changes of the
layer parameters is not possible 1f the transfer functions

are calculated as a function of frequency.



2. Analysis of Factors Affecting the Character

of the Transfer Function Curves

Though normal mode theory and the Haskell-Thomson
matrix development is the more convenient for numerical cal-
culations of the transfer functions of seismic waves in
layered medla, nevertheless there are other theoretical
approaches to the problem. While these latter are more
laborious for numerical calculations, in some respects they
glive cleafer insight into the physical problem and into the
phenomena taking place in the stratified meaium, This
better understanding of the problem helps to evaluate the
influence of each of the layer parameters in the transfer
function itself.

In this section we present two different approaches to
the propagation of seismic energy in layered media in crder
to understand better the behavior of the transfer functions.
The first one 1s based on conslderations of constructive
and destructive interference of the primary and reflected
waves arriving at a given point of the surface. The second
approach considers the Fourier transform of a delta funct.on

pulse multiply reflected and refracted in the layered medium.

3.1 Interference patterns of multiply reflected seismic

waves,

The effect <f layered medla on an infinite train of
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sinusoidal longitudinal waves of a given angular frequency

w/ v, be investigated from the point of view of construc-
tive interference of the direct arrival of the wave at the

surface 2nd the simultaneous arrivals of reflected and re-

fracteu waves at the same point of the surface, The result
will be a superposition of waves of the same frequency but

of different amplitude and phase.

The amplitude of the reflected and refrscted rays may
be found by solving the Zoeppritz equations (Zoeppritz,
1919) in terms of the angle of incidence of the ray, the
type of conversion taking place, and the contrast of veloc-
icties between the tvo media at the interface, For & ray
suffering several reflections, refractions, and conversions
the final amplitude will be the product of the appropriate
coefficients at each interface. Graphical and numerical
values for the solutions of Zoeppritz's equations are given
by several authors (e.g., Steinhart and Meyer, 1959; McCamy,
Meyer, Smith, 1962; Ccstain, Cook and Algermissen, 1963).

-In all these studies the frequency of the wave 1s
neglected since the authors are interested only in the am-
plitude or transmission noefficients of tue interfaces.

However, the resultant amplitude for the displace-
mant at the free surface of a layered medla due to the
superpgositica of wraves of the same frequency but of vary-
ing amplitude and phase is a function of both the ampli-

tudes and the phases of the components,
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3.11 The single layer case.

Consider a simple case. Let a plane wave front DE
(Figure 19) arrive at the interface of a single layer
model.

Figure 19, Seismic transmission in a single layer model.

Let R be a point at the surface such that the direct P and
the converted SV from che point F meet together., The two
rays, PD and P7, were in phase at the wave front DE but they
wili not be in phase when they arrive at R. The phase dif-
ference is a function of the travel time difference At of
the two paths., If these travel times are TEFR and TDR their

difference will be:

- e
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L,
At Tera- Ton = (‘;E:c 5 & = “ . ""f') w;fz‘
N L. . L\. (3'1)
B, "““‘jq Q/. J"‘V\e,.

where e2 is the angle of emergence of the ray below the

interface

e and fl the angles of emergence in the layer

for the P and SV waves,

Expression (3-1) can be simplified using the relations

AL B Al (3-2)
g ¢, ‘OSg, Q‘S’Sf’_

8o that

L.

-
= —

t”"\

f, — A é,)

Assuming a Poisson's ratio 6 = 0.25 as an approxi-

1 i

mate value for the rocks of the crust, the time difference

is reduced to
— L . )
At___d U/' pinn fi = Hane,

If T is the period corresponding to the angular veloc-

ity wthe phase shift &__ at R between the P and SV wave

sv
will be given by:
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& 42)‘1!’):_A_L: = A(.' :(?.E_L(-QMQ'+V3—IJ;“C?4)
=Y T 1 =~
(=04, ...) (3-3)
where f is the natural frequency of the wave,
In a similar way the phase shift él3p between the
direct P arrival and the doubly reflected P wave (Figure
10) may be found.
| .
€.
Figure 20. Triple reflection of P wave,
In this case the phase difference £3P is:
E;p +ANN = J;lx(.l.z ann € (3-4)

For the simple case of a single layer the only possible

combinations of rays arriving to the receiver R, are P and
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SV waves that were reflected one or more times at the surface
and at the interface.

In general the phase difference between the direct P
arr‘val and a wave that travels in the layer n times as P

and m times as SV is given by:

1) Phase shift due to n times as P = J.;%! (n-y)ﬁé-€‘
1

2) Phase shift due to m times as SV = (? L’. ma V3 &-\'M}"
A,

So if Enp: Mgy 18 the phase 3hift of the total path:

f"P,‘“"w +Anr = ap;&; [(M-l) nn €,+Mav3- hvf.] (3-5)
(M'; o, A, )
Note that (3-3) and (3-4) are special cases of the
generaliexpression (3-5).
The rhase difference between any two rays arriving
at R one of the traveling N times as P ard M times as SV

and the other n times as P and m times as SV is given by:

£ + anr'] = (f __1,_'__'_ (N-n)k"v e + (M-M)VEM'M!, (3_6)

X,
(h':. 0, 4})

If a .ontinuous train of slnusoidal waves arrives at
the 1interface the amplitude at the surface will be controlled
by these phase dif'ferences and by the amplitudes of the re-

flections. If two rays are 1in phase they will reinforce each
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other to give large amplitude; if they are 180° out of phase
their resultant will be the difference of the amplitudes.
When all the possible reflectlons are considered and the
ground motion is resolved into vertical and horizontal com-
ponents and the effect of the free surface 1s considered,
the final result is the value of the transfer function for
the vertical and for the horilzontal component for the given
frequency, as found by Haskell (1962). The same considera-
tion for other frequencles will give the transfer function
curves 1& terms of frequency. For the single layer case
the problem could be easlly solved and prepared for numeri-
cal calculations since the amplitude coefficlents of the
reflected waves become too small after a few reflections and
their contributicn could be neglected. The problem will be
more complex when several layers are considered. This is
the reason why for numerical calculations it is more con-
venient to use the matrix method of Haskell and Tnomson,
Nevertheless the expression (3-6) for the phase shift is
significant since it indicates the influence on the transfer
function of the thickness of the layer, and the velocity of
the P wave, and the angle of incidence.

The thickness of the layer h1 is a common factor of
all terms in the expressions (3-5) (3-6). This means that
the same phase relation could be obtained for a mudel with
a layer of different thicknes: provided the frequency is

changed in such a way that f.h; remains constant. Since




48

the thickness of the layer does not have any influence on
the transm. .sion coefticients the amplitudes of the trans-
fer functions will te the same and the values will simply
be displaced in the frequency domain. This was numerically
and graphically shown in the graphs of Figure 1,

The influence of the P velocity on the transfer func-
tions 1s different. A change of ,, affects also the fre-
quency in a way similar to the thickness though in the
opposite direction. The main influence of the change in
velocity; however, 1s that the transmission coefficients de-
pend on the velocity contrast above and below the interface,
The curves, accordingly, will not only be displaced in the
frequency domain but the amplitudes will also be affected
by a constant multiplier. This effect may be examined in
Figure 2 where the transfer functions of two crustal models
were compared.

These consliderations suggest that the same transfer
functions could be obtained if the values fohl/d,. and
ol M were to be held constant, though the transfer func-
tions so obtained would not correspond to the same values
of frequency. If only c#l/b{z changes, the amplitude of
the transfer function will change but not the periodical
character and general appearance of the curve,

This analysis of the transfer functions suggested the

calculations in terms of the dimensionless quantity x where:

Y = £ %:- (sme, + I3 Smﬂ) (3-7)
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Since Cil/b(g can have any value this results in a
family of curves with similar periodic'ty and shape but
different amplitude of the oscillations. A family of curves
is obtained for each angle of inclidence since the trans-
mission coefficlents change with angle of incidence, The
change with angle of incidence is gradual. This makes 1t
possible to interpolate between the different angles of in-
cidence considered in this study. The set of these curves

is presented and discussed in detail in the next section.

3.12 The multi-layered case.

The same considerations that were used for the one
layer problem can easily be extended “o0 the two and more
layer case,

For the two-layer case Snell's law shows that

C = s = 017_ = _.o_(L 3 84 =2 8“
Cos €4 s QL los e’ ‘O-SJ-( COS!:

where ¢ 1s the apparent surface velocity.

Figure 21. Multiple reflection and conversions

of incident P waves,.
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Referring to Figure 21 from D to R the P wave travels
with velocity ol ;. Then for a freguency f, the phase change

& ; from D to R 1s

4+ 2Mn = LR - _A;l"_'_

Enq -
P )P‘ od, Hme,
(Vt: 0,‘{...)
where )‘pl is the wave length of P in the first layer. If

p

the wave travels ny times as P in this layer, the total

phase change in this portion of the path will be

£“+27'1V)': -n"L"'
Pn1 go":l’me‘

(h'; 04,..)

Similarly, for a wave traveling n, times as P in the second
layer the corresponding phase change‘Eme, will be:

v N, b
6?'\3_ + 2N n' = X a.:h—t\'e,_

(V\': , 4,-..)
for a wave traveling my times as SV in layer 1, the phase

ESVM‘ + 2—7'7")’ = j %:L:Jb_\?
' 1
(n': O,'(/...)

and for an SV, m, times in layer 2 the phase 1is:

is:

Epums + 270 = [ by (3-6)
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The phase change for the portion of the path EH depends on
the distance GH, ‘hat 1s, on the difference of the projec-
tions onto the interface of the crust portions of the wwo

rays. This difference for two rays, one traveling as P,nl
times in layer 1 and n, times in layer 2, and as Sv;ml and
m, times respectively, and the other traveling as P,N1 and

N, times, and as SV, Ml and M2 times, 1s:

(N*‘ V\J Cos ¢, + (N~ nz.) cos €,

sann €, sin e,
+ LM,-w.‘) cos-L + (M,_-m,_) Loifz
Sin €, Lin ¢,

and the phase & gy corresponding to EH 1is

2 2
eEH + Zhn'; J- L, (,\;' V\,) Cos & 4—1"'(’\!1;”‘) (os 81
L 2

13-9)
MM-m) cos?f,  w b (om) oY,
A, A
i (h% Qp{“)

The total phase di“ferense & for the two rays, from (3.-8)

and (3-9) is:

-1

r-

£+ 2nn' = ‘? .‘b_'.(m,-n,/) tin e+ VI (M-m,) f-«-‘nf4

' —
-

[ -
v b (N,- N )san €, 4+ V3 (M,-m,)siv\ f‘

b e

(n's04,...)




This expression for the phase difference of all the
rays arriving at the poilnt R suggests, as 1n the single
layer case, that it may be advantageous tc use a dimen-
sionless quantity X in the calculation of the transfer
functions for two-layer models. This time the definition
of X is:

X = 3.%(9‘4/\8.‘-}\/3 fin 24) + :—:(f/\"\ €z+V§ T XZ)

(3-10)
or B’: {,4- {z,

if {; = X;(\«; (#n e, + V3 sin !;)

- (i=142,..)

Wﬁen calculations are performed with models of exact-
ly the same values for the hy/m, and &;/o( , ratios, the
transfer functions have similar form provided the angles of
emergence are the same through the layers of the crust.

The ahplitude of the oscillations depends on the velocity
contrast of the two layers with the mantle., If this con-
trast 1s kept constant the same numerical values, for a
given J', are obtained no matter what the individual values
of the thicknesses and velocitles,

The same considerations apply in obtaining a dimen-
sionless parameter, x,, for the case of an n-layered model.

In this case



|u"'
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e g % L‘_i(sin e+ V’Eamé);}

é b/ (3-11)
- 4

Consequently, if all layer thicknesses are multiplied by a
constant, R, the same results will be obtained for equal
values of 3'. In terms of frequency the change will be in-
versely proportional to R. If all the velocities including
the velocity of the semi-infinite medium are multiplied by
a constant, the same transfer function is obtained for the
values of"f'since the angles of emergence, 24 and £4,
through the layers remain constant. If the velocity con-
trast with the mantle 1s changed while the velocity con-
trasts within the layers remain constant, families of . wrves
are obtained with similar form but different amplitude., The
more layers are present the more combinations are possible

and the number of families increases greatly.

3.2 The Fourier transform of a pulse and its reflections,.

The problem of the transfer function of layered media
for selsmic waves could be considered as the ratio of the
Fourier transforms of the incident pulse at the bottom of
the system and the Fourler transform of the record obtalned

at the surface of the layers,
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For simplicity sake 1t is convenient to choose a unit
delta function for the incident pulse since the Fourier
transform of this functlion has unity as modulus and zero

phase for all the frequencies (see Figure 22a,b).

4.
i . X ) )
w/ w/
: (a) (¢)

Figure 22. a) Modulus of the delta function
Fourier transform
b) Phase
At the surface the record will consist of a first ar-
rival followed by several reflections and conversions of

energy arriving with certain time delays with respect to
the ihitial P. Let us assume that no critical values of

the angle of incidence are reached in any of the layers;
consequently no total reflection takes place, with the ap-
g propriate phase shift, depending on the angle of incidence.
Then the only possible phase snifts are O or J{, which on
the record will be shown as pulses of the same sign as that
of the direct or initlal P or pulses of the opposite sign.

The vertical component record, neglecting smali absorptions
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that could take place in the crust, will look like Figure
23, and its time domain function will be of the type:

0 < 0 §1) +b S(e-g) + cd(E-M) v

where the T~ are the time lags, and a, b, ... are Zoep-

pritz coefficlents,

‘(L

1}»
T c
0 b lc

| ama—
0.

t

ot

Figure 23. Typical record of pulse multiply reflected.

Considering only the first arrival and the first sec-
ondary wave let us find the corresponding Fourier transform

in the frequency domain.' Let

&J@)+LJ@-%)

16)

Then

w) = "'L— {(6—"" e'wdt'
Fw)= a Vz_n/ %)
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~et us cnange the vasiable:

&lz t"’?ﬁ
Then:
: y - ew(Er)
E(w)_—_ o + \3_ J(_(’)ﬁ d&,
ven
e
w7 .

This 1is a complex quantity. Its modulus is:

%4

L g =
F (W)= }Eﬁ. + b LO}(UU’!‘Z)] + bzfi“ (W(‘T?)

\

[&" + b cos (why) + 2ab s (wity) +

i1

]

4(3-13)
1 2 2 : gt i
+b S\r\(uJﬁg] = &A.*‘b -+216&t><115(uu:’é]

gnd the phase 1is

-1 .
P = ban _ _b sin(wiy)

A+ b cos (whp) (3-14)

The transfer functions presented by Hannon (1964a) are the
ratio of the vertical and horizontal component at the sur-
face, to the total amplitude at the bottom of the layers.
Our expression for Fl(uu) represents thls same ratio of the

surfacs components to the total amplitude at the bottoum
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since the spectrum of the amplitude for the delta function
has unity as modulus and zero as phase.

For the simple case just considered of a single re-
flection the modulus of the transfer function consists of
the square root of a funiction that oscillates Ssinusoidally
about tbe 1line a® + b°, with amplitude 2,, and with period
determinable from the quantity w Ty . For large values of
the coefficient b the amplitude of the oscillation will be
large. This would correspond to the converted SV wave or
to the first reflected P wave since the amplitude of the
reflections and refractions decays rapidly after a few
partitions of energy at interfaces nr- the free surface. 1In
general, the larger the contrast between the interfaces the
larger 1s the co2fficient for the reflections, and the lar-
ger the.oscillations of the transfer functions. Murther-
more, the frequency of the oscillations will be more rapid
with larger ’;; . This corresponds to long time lags be-
tween first arrival and reflections, ard shows that in gen-
eral very fast osclllations of the transfer function will
have small amplitude and long-period components will have
larger amplitude.

The same argument 1is easily extended to the considera-
tion of several reflections. For a record of the type of
Figure 23 on which multiple reflections of the primary
pulse are shown, the time function of the record will be

as in equation (3-12) and its Fourier transform in the
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frequency domain has as modulus

o 2
F(w) :iCk-ﬁ b(oj(u}/!\;‘)-{—c cos (w'."{ _;_!
| "
b ;"V‘(w’(\g)ﬁ- 'd s(n(w'rg){._” J

-

- Ja1+ bz+ Cr +2Lab cos (wiy) +

+

]

e cos(whe) +... +Z[bc c_osw(u’;-’?{_)
+...JV2
J (3-15)

This modulus 18 the square root of a function composed

of the constant value (a2 + b2 + ¢°

+ ....) Plus a series

of sinusoidal compecnents of different period and amplitude.
In practical calculations only a few of these sinusoidal
components should be considered since they becom~ very small
after a few reflections and refractions,

The phase angle for the same transfer function is:

' bygin (why) + ¢ sin (W) 4 ...

Y: t-df\

This phase angle is zero for zero frequency and indicates

that long wave lengths are not affected by the layers. As
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the frequency increases the numerator of the expression
increases and the denominator decreases, so the phase
angle increases. But again the value of the phase angle
is controlled by the sinusoidal components with the larger
amplitude terms, This can be observed in the graphs of
the transfer functions presented in the next chapter.
Since the periodicity of the modulus and phase of the
transfer functions depends on the time lags between first
arrival and later reflections and refractions, it is con-
venlent ﬁo calculate these time lags as a function of the

layver parameters.

3.21 Time lags between primary arrival and multiple

reflections.

The first arrival o. energy after the direct P will be,
in the Ease of the one-layer model, the converted SV. From
Figure 19 and equation (3-3) this time interval At is
(assuming G = 0.25)

"T’Sv - h, (\/3' sin(fi — S$in 64)

A, (3-17)

The time interval for the wave reflected as P at tiie free

surface and as P again at the bottom of the layer (see

Pigure 20 and equation (3-4)) is given by

; (3-18)

——
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In gereral the time intCerval between the first direct
P and a ray reflected n times as P and m times as SV, where

ntm=2r, r=¢, 1, 2, .. is:

:‘?,“SV = _EZ"_ (V\-—I) $in ef + '/B-M f”’\/1 (3_19)

,T.

4

and the period of the transfer functiocn component will be,

from (3-135), a function of

e - 29 L.r \ : 3 ‘ 0]

i = 21 b (00 i s Vi1
'

This expression indicates, agaln, that if for different one-

layer crustal models the quantities sin e and sin fl remain

ccﬂstant the same periodicity or character - . the transfer

function will be ottailned when the results are calculated

in terms of the dimensionless parameter

Y- X.;"‘é_(sin e, + V.?sian

The amplitude of the oscillations will depend on the veloc-
ity contrast between the layer and the semi-infinite half-

space,

3.22 The multi-layered case,

The problem could be extended to consider multi-layered
models. For the two-layer case let us consider the %ime lag
between the first direct P arrival and a ray reflected, re-

spectively:

. . ey -
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nl anc ml times as P and as SV in the first layer,
n, and my, times as P and as SV in the second layer,
then the time lag of the reflected wave 1is:

’}"H.,P, v'),_Pl MV, m v F .};—’_[(n‘_i) S‘"’\ (’, + \/..3 , S\.V\ (L] +
{

+:(_L—[(Vu- |) $1n 8,4 \Bm, s Jl] (3-20)

L

and the sinusoldal component of the transfer function in-
troduced'by thls reflection for a constant time lag will
oscillate in the W dimension with a period

-~ _ 2%
w) = — (3-21)

Since the transfer functions are plotted against the param-
eter K/ix is convenient to express this period in terms
of Y units. Then using (3-11), (3-13) and (3-21) the

period of the sinusocldal component will be
| (2 he o — .
T(r).—_ T(w)?s—_’ é ;L—(.{W\ e, + V.3Jnnf;)
n . '
-4 > he (sin e, + (/B’smf;) (3-22)
A N

For example, for the first SV arrival in a single layer

crust the time lag T'g, given by (3-17) was:

Ty = .‘%(Tj‘ sSin ‘& - smc,)




A2
The period of the transfer function component introduced
by the first SV reflection measured in )X units will be:
T(X) - (S|ﬂ e.( + V3 fin vg{) (3_23)
VF sinfy - sin @y
Similarly the period of the transfer function components
for the case of multilayered models is gliven by:
< h.
Tl) 2 b i ecs 13 sinf)
=4 o< ) (3-24)

{T/

where 7~ is given by (3-20) in terms of the thicknesses of
the layers, h;, and the P velocities in these layers, o .
transfer function is used to classify the multilayered

!

|

|

I

ﬁ This analysis of the sinusoidal components of the

|

a models in groups with identical or similar transfer func-

] tion curves.

E Since the thickness of the layers does not affect the
amplitude of the components but only their periodicity ac-
cording to (3-24), identical transfer curves will be ob-
tained when all the thicknesses of the layers are multi-
plied by the same factor. Thus the significant effect of
the thicknesses of the layers of the models is not their
absolute value but their ratio.

Change in the velocities of longitudinal waves 1in the

layers may change the amplitude of the components of the
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transfer functions. Nevertheless if their ratio is kept con-
gtant, the amplitudes will remain constant and also the
periodicity of the components, according to (3-24). Thus

the significant effect of the velocities 1s also their ratio.
Nevertheless it 1is possible to keep constant the periodicity
of the components and at the same time to change their
amplitude. Since in (3-24) the period does not depend on
the veloclity of longitudinal waves in the mantle it 1s pos-
sible to change this velocity without affecting the periodic-
ity. But‘changing the contrasts of velocity between theo
mantie and the crust layers will affect the amplitude of

the sinusoidal components of the transfer function (3-15)
(3-1€).

These observations are the basis for the evaluation of
the transfer functions for two and more layer models, By
changing the contrast of velocities between the mantle and
the layers but xeeping constant the relationship between
the velocities of the layers of the crust, families cof
curves of lidentical shape but of different amplitude are
obtained. As before, these allow interpolation for inter-

mediate models.




4, Master Curves for the Transmission oi Seismic

Longitudinal Waves in Layered Media

The theore ical conslderations of the preceding section
prepare the way for 3 presentation of the transfer functions
for different crustal models in a methodical way.

In the present section we shall first present and dis-
cuss the complete set of single-layer crustal models. Then
we wWill discuss the case of two-layer models, and several
families‘of this type will be presented.

Unless otherwise indicated the following general assump-
tions will be presumed to hold:

1) The layers are horizontally stratified.

2) Poisson's ratio in the crust is equal to 0.25.

3) The density changes linearly with the P velocity.

4) The apparent surface velocity must be greater

than the P velocity in the top layer and greater
than the S velocity in any layer.

The second assumption 1s bacted on numersus meagsurements
made on the rocks of the crust and upper mantle., The third
assumption, as noted in section 3, 1s based on expe:rimertal
studies of the chénges of density in th» crust with seis-
mic velocities by Birch (1964) and Nafe and Drake as cii=d
by Talwani et al. (1953). Small departures from these two
assumptions such as imnay uv2 present in nature do not alte:

the vaiues of the tranc®er Turetlon 1n an appreciable wa':.

e gy Pg— = — = _
S = e 4 ° p—
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Assumption 4 is placed in order to avoid the total re-
flection which will take place, even for the SV converted
ray, it the assumption is violated.

In order to study the transfer functions the FORTRAN II
Computer Program of Hannon (1964a) was modified to calcu-
late these functions in terms of the dimensionless param-
eter ¥ as defined in section 3 (see Appendix I). The pro-
gram can also be used to calculate the functions in terms of
frequency with the use of an optional ceontrol. The results
are plotfed cn logarithmic scale.

In discussing the transfer function curves we shall
make use of the terms, periodicity and amplitude. Perio-
dicity refers to the osclllatory character of the curves
with their peaks and troughs. The term amplitude refers
to the .maximum values of the transfer functions over these

oscillations.

L,1 One-layer models.

The simplest crustal model is a single layer over a
half-épace. In this layer the velocity for the P and &
waves may be considered to correspond to the avereage veloc-
ity of the P and S waves in the crust of the real earth,
whether the crust may actuelly consist of several layers or
whether there may exist velocity gradients in the crust,
The thickness of the layer is equal to the total thickness
of the real crust. Though this is a simple model, never-

theless from the theory of transfer functio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>